Syllabus,	Genera	l Biochemistry (MCDB W 108A)	Syllabus - Summer Session A (2	2022) Last updated — 5/17/202
Instru	ictor: Pro	f. Duane Sears <u>duanesears@ucsb.edu</u>	TAs: Nerea Muniozguren neream	nuniozguren@ucsb.edu Amanda Maheras <u>a_maheras@ucsb.edu</u>
<mark>Wk)</mark> Da	ay Dat	e Lec. No.	Topics and Reading Assignments	Last updated on Tuesday, May 17, 20
(1) M Ju	une 20	Juneteenth Holiday Course In	troduction and Lecture L01	These two Panopto videos will help prepare you for this cour
		L01 Protein Structures and Func	tions	
		THEME I: Basic Proper	ties of Amino Acids and Analysis of F	Reversible Ligand Binding Reactions
т	2:	L02A Basic Amino Acid Properties L02B AA Stereochemistry @@NC Ch 3 pp. 75-81; **WWBH-Ch 2 pp. 13-17; Prblms 2.1-7;10-11;14-		
w	22	LO3A Reversible Monovalent Liga	and Binding Reactions. LO3B Buffe	ers NC Ch 2 pp. 45-74; Ch 5 pp. 157-166; ^{&&} RLBR pp. 2
R	23	L04A Multivalent Reactions	L04B Equilibrium Perturbation by	Microenvironment NC Ch 3 pp. 81-5; RLBR pp. 22
			THEME II: Strategies for Isolating	g Proteins
F	24	L05 On the Trail of Recombinant Human Erythropoietin (rhuEPO) (Isolation and Characterization) NC Ch 3 pp. 8		
<mark>(2</mark>) M	27	L06 Distinguishing Recombinant	6 Distinguishing Recombinant from Native Human EPO NC Ch	
т	28	L07A Sickle Cell Anemia		##BF Ch 1 pp. 1-12; Ch 11 pp. 452-62; 472-92; Ch 12 pp. 502
		L07B Discovery of Sickle Cell Hb		NC Ch 5 pp 172-174; L. Pauling Science 110: 543 (1
		THEME III: Stro	tegies for Characterizing Protein Sec	quences and Conformations
w	29	L08A Primary (1 ⁰) AA Sequences	of Hb A & HbS	V. Ingram, Nature 180:326 (1957); NC Ch 3, pp. 92-
M	<u>/IT1</u>	L08B Polypeptide Sequencing	WWBH Ch 3 pp. 30-36; BF Ch 1 pp	o 1-12; Ch 2 pp 13-35; WWBH Ch 3 <u>Problems</u> : 3.1-8, 11-12, 16-
R	30	L10A Stability and Folding of Pro	teins	NC Ch 4 pp. 143-
F J	luly :	L10B Constraints on Protein Fold	ing and Conformation MIDTERM #	#1 EXAM REVIEW, ONLINE (TBA) BF Ch 2 Hb Structure pp. 13
(3) M J	luly 4	Independence Day		
		L09 3-D Structure Determination	of Myoglobin and Hemoglobin	NC Ch 4 pp. 115-43; BF Ch 2 19-
т		Online MIDTERM #1 EXAM, Tue	sday, July 5 th	
		THEME IV:	Analysis of the Regulation of O2 Tro	ansport by Hemoglobin
w	(L11 O ₂ Binding and Transport b	y Hb (O_2 saturation plots)	NC Ch 5 pp 157-72; BF Ch 3 (all); RLBR pp. 30-40; ^{\$\$} Martin Ch
R	7	-	O ₂ Binding by Hemoglobin (Hill plot	s.) NC Ch 5 pp. 157-72; BF Ch 2 pp. 19-32; BF Ch 3 pp. 45
F	2	L13 Metabolic Regulation of Hb	O ₂ Transport NC Ch 5	pp. 168-72 BF Ch 4 pp. 61-71; Ch 5 pp. 91-109; & Ch 7 pp. 169-
(4) M	1:			 L7- L14B Hemoglobinopathies/Hb Variants BF Ch 14 pp. 91-1
			Analysis of Enzyme Kinetics and Reve	
т	12			irect-linear plots) NC Ch 6 pp. 186-206; WWBH Ch 8 pp. 144-1.
w			netics 16B Kinetic Constants and Plo	
				tion.) NC Ch 6 pp. 207-213; WWBH Ch 8 Problems: 8.16-17,20
		· · · · · · · · · · · · · · · · · · ·	IEME VI: Specific Mechanisms of En	
F		L18 Structure and Catalytic Pro		NC Ch 6 pp. 212-218; WWBH (
•		MIDTERM #2 EXAM REVIEW, ON		
(5) M	1			
T	19			NC Ch 6 pp 212-218; WWBH Ch 7 Problems: 7.1-17,
w	20			NC Ch 6 pp 212-213, WWBH Ch 7 <u>Problems</u> , 7:1-17, NC Ch 6 pp 220-223; Ch 7 pp. 257-258; WWBH Cl
R	2:	, ,	c Mechanisms L21B Cysteine Prote	
			VII: Biological Strategies for Regula	
F		L22 Introduction to Enzyme Reg		NC Ch 6 pp. 226-236; Ch 27, pp. 1147-1149; WWBH (
F	24	L23 Allosteric Feedback Regulat		h 5 pp. 168-170; Ch 6 pp 226-228; Ch 22 pp. 915-916; WWBH
(6) M	2!		ctions Catalyzed by Different Isozyn	
(0) IVI T		, -	vate Kinase (PK) Isoforms in Mamm	
	20 21			nalian Cells NC Ch 14 pp. 555-58; Ch 15 p. 606-
14/	2			
W R	29			
R F	28		20th	

** (<u>WWBH</u>): W. B. <u>W</u>ood, J. H. <u>W</u>ilson, R. M. <u>B</u>enbow & L. E. Hood, *Biochemistry: A Problems Approach*, 2nd ed., 1981 – Chs 2-3 & 7-8 ##(<u>BF</u>) - KF <u>B</u>unn & BJ <u>F</u>orget, *Hemoglobin: Molecular, Genetic & Clinical Aspects*, 1986 – Chs 1-5, 7, 11, 12

\$\$ L. Martin All you Really Need to Know to Interpret Arterial Blood Gases, 2nd ed. Lippincoltt, Williams, & Wilkins, 1992 - Chs 1-6

Syllabus, General Biochemistry (MCDB W 108A)	Syllabus - Summer Session A (2022)	Last updated — 5/17/2022
Course Drop Dates		
• June 24 th Drop deadline for a <u>full refunc</u>	l. (No later than 5 pm.)	
• July 6 th Drop deadline for <u>no withdrawa</u>	l (W) recorded for your grade for this course. (No l	later than 5 pm.)
Course Grades		
• Letter grades for this course will be dete with a few questions and only worth a f	ermined from the <u>combined scores</u> for 3 examinati ew points.	ions and several short quizzes, each

• The curve of the class distribution of these combined scores will be used to assign grades where the <u>mean</u> of the distribution will more or less define the "**B-/C+**" grade boundary.

Online Graded Quizzes (120 points total) —-<u>Start</u> and <u>end</u> times for these quizzes are posted on the *GauchoSpace*.

Quiz 1 (Qz1) (5 pts), Wednesday, June 22 — 20 min.

Quiz 2 (Qz2) (12 pts), Friday, June 24 — 45 min.

Quiz 3A (Qz3A) (3 pts), Sunday, June 26 - 30 min.

Quiz 3B (Qz3B) (3 pts), Monday, June 27 — 30 min.

Quiz 3C (Qz3C) (8 pts), Tuesday, June 28 - 30 min.

Quiz 3D (Qz3D) (2 pts), Tuesday, June 28 — 30 min

Quiz 4 (Qz4) (22 pts), Wednesday, June 29 - 60 min

Quiz 5 (Qz5) (14 pts), Thursday, June 30 to July 4 – 45 min (average of 2 attempts)

Quiz 6 (Qz6) (9 pts), Friday, July 8 to July 11 - 60 min.

Quiz 7 (Qz7) (14 pts), Monday, July 11 – 60 min.

Quiz 8 (Qz8) (9 pts), Wednesday, July 13 - 30 min.

Quiz 9 (Qz9) (13 pts), Thursday, July 14 – 30 min.

Quiz 10 (Qz10) (6 pts), July 20 to 22 – 45 min. (1 attempt only)

Online Graded Examinations (Group study with others in the course might be worth considering..)

MIDTERM #1 EXAM (100 pts), Tuesday, July 5 — 90 min. MIDTERM #2 EXAM (100 pts), Monday, July 18 — 90 min. FINAL EXAM (200 pts), Friday, July 29 — 150 min.

Proctored Exams

•

- 3 exams will be administered by GauchoSpace (with a <u>password</u>) and <u>proctored on Zoom</u> by one of the instructors.
 - The exams quizzes, will focus on problem-solving, data analysis, and application of fundamental course concepts.
- All examinations and quizzes will be **open resource** that **allows access** to the following resources:
 - Your <u>hand-written</u> and/or <u>digitally annotated notes</u> can be used.
 - Any textbook (not online) and other printed materials (*e.g.* slide readers) can be used during the exams.
 - Any **digital resources** are allowed if <u>already PRE-stored</u> on the computer used during the exams. Thus, *ahead of the exam*, you should <u>download</u> the lecture PowerPoint slide PDFs and other PDFs to your computer.
 - If you want access to an <u>online textbook</u> or other <u>online resource</u>, download these materials to your computer <u>before the exam</u>.
 - As for Internet access during the exams, you are only allowed access to the GauchoSpace course website and Prof. Sears' Instructional Biochemistry website — <u>https://biosci.mcdb.ucsb.edu/biochemistry/</u>.
- During an exam, you are <u>not</u> allowed access to <u>other</u> Internet websites or other digital devices that can be used to communicate with others.
- <u>During</u> an exam, you are **NOT** to communicate with anyone and after completing an exam, you are <u>not permitted</u> to communicate with someone who hasn't yet started the exam or who is still taking the exam.
- By checking the **academic honesty agreement** <u>checkbox</u> before opening an exam, you confirm that the answers submitted are yours and that you did not receive unauthorized help.

Course Resources

- The schedule for weekly online **Instructor-led** or **TA-led review sessions** or **office hours** will be posted on GauchoSpace.
- Log into **GauchoSpace** (**GS**) for access to most of the digital materials you will likely need for this course including *PowerPoint* <u>lecture slides</u> (saved as *Acrobat* PDF files) and the *Panopto* lecture videos.
- The online lecture slides and videos will provide the <u>primary sources</u> of information for the examinations in this course.
- A <u>complete set</u> of <u>color</u> or <u>black-on-white</u> *PowerPoint* lecture slides can be obtained by contacting Professor Sears.
- The recommended course textbook chapters and other reading materials are listed on the syllabus and also posted on GS.
- A separate instructional biochemistry website <u>https://biosci.mcdb.ucsb.edu/biochemistry/</u> also hosts a variety of animations, interactive 3D structures, interactive graphs, tutorials, self-assessment quizzes, etc. which are primarily designed to help students master some of the more difficult concepts and problem-solving exercises covered in this course.
- **Online overviews** of various course topics and descriptions of the visualization tools for interactive molecular structure and graphical analysis can be found at <a href="https://biosci.mcdb.ucsb.edu/biochemistry/MCDBW108A/MCDBW10A/MCDBW108A/MCDBW108A/M
- Practice exam and quiz questions will be activated with <u>specific deadlines for completion</u> throughout the course. These are designed to help you prepare for some of types of problem-solving questions you'll likely encounter on the exams. Most of the quizzes include a few 1- or 2-point graded questions to be answered during a short (15- to 30-min). time window. Your <u>net score</u> for each quiz will be counted in your total course score for all grade assignments, including the 3 full examinations.